If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+32H+128
We move all terms to the left:
(H)-(-16H^2+32H+128)=0
We get rid of parentheses
16H^2-32H+H-128=0
We add all the numbers together, and all the variables
16H^2-31H-128=0
a = 16; b = -31; c = -128;
Δ = b2-4ac
Δ = -312-4·16·(-128)
Δ = 9153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9153}=\sqrt{81*113}=\sqrt{81}*\sqrt{113}=9\sqrt{113}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-9\sqrt{113}}{2*16}=\frac{31-9\sqrt{113}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+9\sqrt{113}}{2*16}=\frac{31+9\sqrt{113}}{32} $
| -83-54x-61=-51x+81 | | -4-4x=-1-3x | | 90+3x+2x+5=180 | | -12.7x+3.6x=-2 | | 1.8x10^(-5)=(x^2)/(0.3-x) | | 2k-3/k+9=3/9 | | 16x+5x-18x=12 | | x/4=250 | | 43-b=-50 | | 4(y-15)=16 | | 2(t+8)=2t+20-4 | | 1.8x10^-5=(x^2)/(0.3-x) | | -7x+41=7(5-x) | | 9y-12=7y-6 | | 14x-12x-1=5 | | y^2+8y=105 | | x-2/2=x/3 | | -3/8v=21 | | 12x-(-10)=-2 | | –10+5c=10+3c | | 2x(x+5)-3(x^2+2x-1)=9-5x-x2 | | 2(28x+3)-1+13x=48 | | 6x-4)=4(3x-2) | | 19x+13=8x2-2 | | -x/11=11 | | 12/x+5=2/5 | | 13(5x)=23 | | -12x-4=x-4 | | y2+ 7=10 | | -201=-3+6-(-6x-3) | | −x−9x2+12x=2+7 | | 12g+-5g-20g=-13 |